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APPLICATION OF AN EXPLICIT TVD SCHEME FOR 
UNSTEADY, AXISYMMETRIC, MUZZLE BRAKE FLOW 

C. H. COOKE* 
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SUMMARY 

Operator splitting in the presence of source terms is necessary in order to apply Harten’s second-order 
accurate, total-variation-diminishing (TVD), shock-capturing scheme to higher-dimensional problems. By 
employing Godunov boundary treatment at the muzzle brake, such splitting is applied to the problem of 
muzzle brake flow simulation for the case of blasts which are impeded, by vertical and slanted baffles, 
respectively. Results from numerical studies of various types of wall boundary condition treatment which are 
consistent with Harten’s TVD scheme are indicated. 
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INTRODUCTION 

Rapid discharge of a propellant gas from the muzzle blast of a weapon induces the formation of a 
strong shock wave which propagates into the environment. The ensuing flow is characterized by 
formation of secondary shocks and contact surfaces within the developing plume. Following 
Godunov’s classical development of the first widely effective first-order accurate shock-capturing 
scheme,’ Sod’ gives a survey of several early finite difference schemes for calculation of shocked 
flow. State of the art, second-order accurate, shock capturing techniques for numerical calculation 
of such flows have been constructed in recent years by Van Leer,3 Colella and W ~ o d w a r d , ~  
Har t e r~ ,~  Roe6 and Osher.’ The object of the present report is to consider some problems which 
arise in applying Harten’s method to the numerical solution of muzzle blast problems governed by 
the Euler equations in axisymmetric co-ordinate systems. 

For the case of a vertical muzzle brake, Harten’s method can be applied through the use of 
operator splitting, as advocated by Strang.8 Methods for splitting in the presence of source terms 
have further been investigated by the author.’ However, the case of a slanted muzzle brake requires 
modification of the method. The use of an orthogonal curvilinear co-ordinate transformation has 
been recommended by Yee.’ O Our solution to this problem, which avoids curvilinear transfor- 
mations, is to develop a hybrid scheme. Here Godunov’s method’ is used near the brake, whereas 
Harten’s method is applied on a uniform grid away from the vicinity of the brake. For weak 
blasts this method appears workable. In any case, the problems arising from this approach are 
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probably no worse than the difficulty of applying boundary conditions at the slanted baffle when 
using curvilinear transformations. 

THE EULER EQUATIONS 

The Euler equations of gas dynamics can be written in strong conservation form as 

at ' ax ' 
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where the respective choices E = 0 or 1 allow either a Cartesian or an axisymmetric co-ordinate 
system. In these equations, p is the density; m = pu, n = pu are the components of momentum and u, 
u are velocities in the x- and y-directions, respectively; p is the pressure; E is the specific total energy, 
related to the specific internal energy, 2 by 

u2 + u2 
2 E=2+- ; e = p E ;  (2) 

and the equation of state is 

where y is the ratio of specific heats. 

EIGENVECTOR PROJECTION 

The second-order accurate, total-variation-diminishing scheme of Harten is well- 
d o c ~ m e n t e d . ~ * ' ~ * '  ' As this scheme in its original conception is applicable only to the Euler 
equations in one space dimension, operator splitting of equation (1) into three separate 
components will be employed. To avoid repetition, the equations for the x- and y-sweeps can both 
be accommodated by the following device: consider application of Harten's method to an equation 

aQ a B  
at at: 

~ + -(Q) = 0, (4) 
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where F(Q) has the Jacobian matrix 

A = L A  + ($4 ( 5 )  
with A = aF/aQ and B = aG/aQ. Then, respective choices of { = x or { = y (in equations (4) and 
(5 ) ,  and in the development below) yield Cartesian x- and y- splittings for equation (1). Carofano" 
advocates incorporation of the source term through the third (split) equation 

aQ -+ W(Q)=O. 
at 

By using the device (4), (9, a single subroutine for applying Harten's scheme on both the x- and y- 
sweeps can be developed, by simply inputting 5 ,  = 1, 4, = 0 or vice versa, as the sweep requires. 

Let c be the local speed of sound; the eigenvalues of A are'' 

(u1,u2,u3,a4) = (0 - c, 0,0 + c, O), 
where 

(7) 

Furthermore, let R = (R ', R2,  R 3, R 4 )  be the matrix whose columns are the eigenvectors of A, 
where R = R(5,, 5, ) .  A choice of R and R -' can be written" 

u - k l c  U u + k l c  
R = [  u - k 2 c  V u + k 2 c  

u2 + u2 
2 

1 1 1 0 

H - klt tc  - k2vc ~ H + k l t t c + k 2 v c  k 2 t t - k l v  

where k ,  and k ,  are determined from equation (8) and 

and 
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i ( b 1  + k , u / c +  ~ , v / c )  - 3 ( b 2 ~ +  k , / c )  - 3 ( b 2 ~  + k 2 / ~ )  3b2 
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b ,  = b2(u2  + v2) /2 ,  
b ,  = (y - 1)/c2. 

Let a uniform grid spacing Ax, Ay be introduced, with 

xj = j  Ax, yk = k Ay. 

(9) 

Denote by Qj+ 1,2,k some symmetric average (the Roe averageI3 was used for computational 
experiments) of Qj,k and Qj+ 1 , k .  Let u:+ 1,2, Rj+ 1;2, RJ721,2 denote evaluations of a', R, R -' on the 
symmetric average Qj+ 1,2 ,k .  We define 

aj+ 1/2 = Ry+l1/2(Qj+ 1 , k  - Q j , k )  (12) 
as the component of 
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A j + i / Z Q = Q j + l , k - Q j , k  

in the Ith characteristic &-direction.’ The vector a of equation (12) can be written as 

where 

M 1  
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cc = - k l A j + l / 2 n  - ( k 2 u j +  112 - k l v j + 1 / 2 P j + 1 / 2 P  + k 2 A j + 1 / 2 m ,  

with 
A j + 1 / 2 P = P j + l , k - P j , k ,  A j + 1 / 2 m = m j + l , k - m j , k  

and 

Aj+ l / 2 n  = n j +  l , k  - n j , k ,  A j +  112e = e j + l , k  - ej ,k .  

The simplest form for Qj+ 1/2 ,k  is 

Q j +  1 /2 , k  = ( Q j +  1,k + Q j , k ) / 2 .  

Roe’s form of the averaging in the <-direction is 

D u j +  1,k + Uj ,k  

D + l  ’ u j+  1/2,k  = 

D v j +  1,k + vj ,k  

D +  1 U j + 1 / 2 , k  = 

D H j +  l , k  + H j , k  

D + l  ’ H j +  1 /2 , k  = 

Similarly, Roe’s averaging can be obtained for u ~ , ~ +  1 / 2 ,  

experiments Roe’s averaging is used, as this is thought to give better results than (15). 
1 / 2  and c j , k +  112 .  In the numerical 

A TVD ALGORITHM 

Assume that operator splitting is to be employed in solving equation (1) on a uniform grid. The flux 
terms are updated by applying Harten’s method individually to equation (4), with 5 = x and 5 = y ,  
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respectively; Euler's predictor-corrector method is applied to update equation (6) .  The solution at 
time 2 is advanced to time t + 22 by application of the following sequence of operators: 

The numerical flux Pj+ 1 / 2 , k  is given by 

At 
'f+ 1 / 2 , k  = Z"f+ 1 / 2 , k ,  

P ( z )  = z2  + t. ( 19g) 
The subscript j + 3 denotes a quantity evaluated on the (Roe) average state, as discussed in the 
preceding section (see equations (12)-( 16)). No artificial compression terms' have been included in 
the algorithm. Such terms can give non-physical results in regions of flow expansion, necessitating 
complicated program switching or interactive processing in order to anticipate such occurrences. 

may be obtained from equations (19) by replacing 
F with G, Ax with Ay and ( j  + 3, k )  indices with ( j ,  k + 3) indices. When equation (1812) is applied at 
a point y = 0, if E # 0 it becomes necessary to apply L'Hospital's rule in evaluating the source term, 
W ,  as u, y approach zero. 

The equations for the numerical flux G j , k +  

BOUNDARY-CONDITION IMPLEMENTATION 

Since Harten's second-order method is a five-point difference scheme, at boundary points two 
pieces of information are necessary, whereas only Dirichlet or Neumann data is all that is required 
for a mathematically well-posed problem. Thus, at a sonic inflow one may be tempted to hold 
the inflow values constant over two mesh columns. As this implies the vanishing of streamwise 
derivatives on the inflow, problems may arise; particularly if, in addition, flow around a corner is 
involved. However, for supersonic flow this corner problem may be somewhat alleviated, by 
employing the Prandtl-Meyer expansion and Mach waves off the corner to calculate a second 
column of values which realistically reflect streamwise conditions. 

At a wall boundary, Yee, Warming and Harten14 advocate methods for approximating a zero 
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normal derivative in pressure, second-order accurate, which in practice is certainly consistent with 
the Euler equations evaluated at the wall. car of an^'^ suggests reflection, imaging points PI, P, 
with P,, P,; the wall being located at P, (of course, the normal velocity component is reflected with 
a change in sign). A more compact reflection, which we advocate, consists of locating the wall half- 
way between P, and P,, with PI,  P, the reflection of P,, P,. Wall flux is now calculated using the 
method of Widhopf and Buell.16 This approach avoids consideration of what to do  at  corner 
points, as now there are no cell centres on the wall. 

At outflow boundaries, which are usually located as far as possible from regions of interest, non- 
reflecting boundary conditions are usually employed. These can consist of extrapolation 
techniques, from interior to the boundary; or others, such as exhausting the outflow to cells having 
semi-infinite volumes.’ 

NUMERICAL RESULTS: VERTICAL BAFFLE 

Gion and Schmidt” provide experimental data for the muzzle blast from a 20mm cannon with 
counter-recoil force generated by a double-baffle muzzle brake device. Using the muzzle exit 
conditions of Reference 17, Widhopf, Buell and Schmidt16 have numerically simulated the near- 
field muzzle brake flow, by means of a first-order accurate Godunov method. This simulation 
includes both single- and double-baffle muzzle brake configurations, with and without the 
inclusion of a projectile. We have chosen the 20 mm cannon (without projectile), single-baffle brake 
configuration as a computational test for the second-order TVD scheme described herein. For 
computational economy, the streamwise brake thickness is narrowed, but this should not 
drastically alter results on the inner surface of the baffle. 

From Reference 17, the barrel thickness is 1 D, where D = 20mm is the muzzle diameter. The 
brake is located 1 Din front of the muzzle exit, with a 1.2 D hole for projectile passage (see Figure 1, 
where in plotting radial-co-ordinate measurements have been compressed by a factor of 0.6). For 
subsonic exit flow of the propellant gas immediately behind the projectile, an expansion wave 
propagating back up the barrel accelerates the propellant gases to the sonic exit condition 

U * = a* = 691 m/s, = 1.25, 
P*/P,  = 11 1. 
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Figure I .  Pressure contours (kPa) for 105mm Howitzer at 1 O O p  (67 steps) 
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Here, a* is the local speed of sound, and P ,  is the exterior (atmospheric) pressure level. 
Figures 1 and 2 show Mach contour plots at various stages in the evolution of a blast wave from 

a 105mm Howitzer test case. In Figure 2, traces of the shock wave impacting on the baffle are 
clearly visible. Figures 3-5 show the baffle overpressure history at various radial locations on the 
inner surface of the baffle, for the Gion-Schmidt test case. Table I shows comparison of TVD 
numerical results against Gion-Schmidt measurements of peak and steady overpressures on the 
inner surface of the baffle. 
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Figure 2. Mach contours for 105mm Howitzer at loops (67 steps) 
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Figure 3. Baffle overpressure history: RID = 0.5; x / D  = 1; time = 4.0181870 x lo-’ 



I 

C. H. COOKE 

0 

1 
0.0 0. I 0.2 0.3 0.4 0.5 0.6 9.7 0.8 0.9 I .o 

NORURLIZEO TIME 
Figure 4. BaMe overpressure history: RID = 1.0; x / D  = 1; time = 4.0181870 x 

0 
0 

0 
0 

9 n 0 

9 
0 

0.0 0. L 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I .o 
NORUALIZED TtUE 

Figure 5. Baffle overpressure history: RID = 1.5; x/D = 1; time = 4.0181870 x 
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Table I*. Overpressure ( p  = ( P  - P,)/P,) at x / D  = 1 

y = R/D Peak overpressure Steady overpressure 

Gion-Schmidt Gion-Schmidt 
Figure 5(b) TVD Figure 7 TVD 

0.5 
1 .o 
1.5 

52+ 62 ~ 

31 37 21.0 22.5 
10 13 5.0 2 6: 

- 

*The Gion-Schmidt configuration includes the projectile and a double-baffle brake: the 
TVD configuration is projectile-less with a single-baffle, thinner brake. 
+extrapolation; P ,  = 2 ~ ,  - P ,  
'Estimated from Figure 5; clearly well under 8. 

Table I indicates TVD peak overpressure calculations roughly twenty per cent in excess of 
corresponding experimental results. To a lesser degree, this excess is also characteristic of the 
Godunov' calculations, which include the projectile. As results for steady overpressures, achieved 
after passage of the projectile, are very nearly in agreement, it is expected that adding the projectile 
simulation to the TVD code should bring closer agreement in the peak overpressure results. 

BOUNDARY CONDITION VALIDATION 

When a blast wave is impinging upon a muzzle brake device, from the physical standpoint the 
boundary condition treatment for shockless flow at the wall should differ from the treatment 
required when an impinging shock wave has traversed the last grid point next to the wall. However, 
in a typical shock-capturing calculation, no cognizance is taken of the actual shock position. Thus, 
owing to the absence of knowledge concerning when a shock wave will arrive, the wall boundary 
condition treatment must be robust enough to be effective in both instances. 

For present efforts, the boundary condition treatment of Widhopf and Buell16 has been 
employed. From a knowledge of one flow variable (zero normal velocity) at  the wall, the Rankine- 
Huguniot relations may be used to solve for wall pressure (and density). This allows wall flux to be 
evaluated, assuming that the wall is normal to the grid-line on which Harten's scheme is being 
applied. (When the wall meets the grid-line on a slant, the tangential velocity must be extrapolated). 
When the flow in the vicinity of the wall is directed away from the wall, the theory of the eisentropic 
expansion wave is employed. 

With exception of the pressure extrapolation given by Yee, Warming, and Harten,', we have 
studied numerically the effectiveness of the boundary conditions discussed in the preceding section, 
for the case of one-dimensional flow and a normal shock wave reflecting from a plane wall. The 
shock is generated by the bursting of a partition separating compartments of a quiescent flow, with 
diaphragm pressure and density ratio P,/P, and p 2 / p 1 .  The propagating shock wave has pressure 
ratio P,/P, if P, > P,.  Using the results of Landau,'* the pressure ratio P,/P, for the reflected 
shock wave can be calculated. 

The numerical study indicated the following: for a weak shock, with P,/P, = 10, and sufficient 
mesh, the proper reflection coefficient P,/P, could be accurately approximated, using each 
boundary treatment studied. Figures 6 and 7 show typical results, for a Widhopf-Buell boundary 
condition and the first-order accurate Godunov method, as opposed to the same boundary 
treatment and Harten's second-order method. Results from pure wall reflection and Harten's 
scheme were essentially the same. 
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Figure 6. Normal shock reflection; Godunov method: streamwise pressure; time = 1.9749430 x 10- 
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Figure 7. Normal shock reflection; Harten's method: streamwise pressure; time = 1,9662630 x lo- '  

SLANTED BAFFLE NUMERICAL RESULTS 

In its original conception, Harten's method5 requires uniformly spaced grid-points; however, in 
more recent worklo it has been applied in curvilinear co-ordinate systems by means of mappings 
from the physical plane to a uniformly discretized computational plane. An alternative approach in 
the presence of irregular geometry is the zonal method of Mohan Rai," where uniform grids on 
different zones are merged at a common boundary by function interpolation. In the present work 
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Figure 8. Typical grid merging at a boundary 
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Figure 9. Blast wave progression for slanted baffle: time = 1.6723490 x 

I 

the complexity of mapping or zonal merging has been avoided through employing a hybrid 
computational method. Here, an irregular boundary grid is merged with a uniform interior grid, 
and the Godunov method’ is used to process irregular cells. Figure 8 shows a typical conception of 
the merging of regular and irregular cells. 

Figure 9 shows velocity vector plots for a typical calculation of the flow from a 30 mm cannon 
with a single-bame muzzle brake. The flow is initiated under the assumption of a shock tube driver. 
At time t = 0 a shock with strength 

p = 3.42 x 105N/m2, y = 1.4, 
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is emerging from the barrel into a quiescent flow at atmospheric temperature and pressure. It is 
assumed that the time interval of interest is sufficiently short that during the course of calculation 
the driving contact surface does not reach the exit plane, which assumption can be used to initialize 
the flow interior to the barrel. 

Here the muzzle diameter is D = 30 mm; the lower edge of the baffle is 1.8 D from the exit plane 
and 0 5 5  D above the line of symmetry. The baffle is inclined thirty degrees from the vertical; it has 
thickness 0.32D, and the top is 1.95D above the axis of symmetry. Owing to the need for 
computational economy in testing the code, the grid is coarse, and the streamwise limits of the 
computational plane not sufficiently far removed so as to be certain they will have no effect on the 
numerical results. 

CONCLUSIONS 

An algorithm for muzzle blast calculation by numerical means, which employes Harten’s second- 
order shock capturing technique, has been developed. This method can be applied to flows in either 
Cartesian or axisymmetric co-ordinate systems. Consistency of the operator splittings necessary to 
apply the method appears validated by the numerical results. It is considered a consistent splitting, 
and has been proved to be second-order accurate.’ The method has been applied to numerical 
simulation of blast wave progression in the presence of vertical and slanted muzzle-brake devices. 
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